

CHEMICAL AND FUNCTIONAL PROPERTIES OF KEFIR—A REVIEW

Binod Kumar Bharti, Bipin Kumar Singh*, Sonia Kumari and Suraj Prakash Gupta¹

Sanjay Gandhi Institute of Dairy Technology (Bihar Agricultural University) Patna, Bihar

¹Department of Philosophy, Baba Raghavdas Bhagwandas (PG) College, Ashram Barhaj, Deoria, U.P.

*Corresponding Author (Bipin Kumar Singh) Email : bipinsgdt@gmail.com

ABSTRACT

Kefir is a fermented dairy product. Fermented milk and milk products are strongly influence on health. It is also considered to be beneficial with therapeutic properties. Kefir can be prepared by inoculating milk with kefir grains with a combination of bacteria and yeasts in a symbiotic food. Kefir is known by the various properties such as antimicrobial, anti-carcinogenic, probiotic and prebiotic. Kefir has been considered as good for health. The consumption of kefir is beneficial in mitigating the symptoms of chronic constipation.

Key words : Kefir, functional properties, health, probiotic, prebiotic, fermentation.

The kefir word is derived from the Turkish word 'keif' means 'good feeling' (Kaufmann, 1997). Kefir is a fermented dairy product. Fermented milk and milk products are strongly influence on health. It is also considered to be beneficial with therapeutic properties. Kefir can be prepared by inoculating milk with kefir grains with a combination of bacteria and yeasts in a symbiotic food. Kefir is produced by the fermentation of lactic acid bacteria and alcohol by mesophilic bacteria and yeasts, respectively (Ahmed *et al.*, 2013). Most microorganisms present in kefir are non-pathogenic bacteria, such as *Lactobacillus* sp. and yeasts. Kefir is supplemented with amino acid, vitamins, carbon dioxide, alcohol and essential oils which have been revealed to have health benefits. Kefir is known by the various properties such as antimicrobial, anti-carcinogenic, probiotic and prebiotic. Kefir has been considered as good for health (Liu *et al.*, 2006 a). Guven *et al.* (2003) reported that an alternative suggestion as to how kefir protect tissues. They found that mice exposed to carbon tetrachloride and the kefir by gavage showed decreased levels of liver and kidney malondialdehyde, indicating that kefir was acting as an antioxidant. Many studies have reported to use of probiotic foods like kefir in the treatment of gastrointestinal disturbances (Reid *et al.*, 2003). One example is diarrhea, which may be caused by a variety of conditions. Probiotics food can help to preventing diarrhea and in reducing its duration; they also alleviate conditions like such infant's diarrhea, irritable bowel syndrome, colitis, gastroenteritis, and traveler's diarrhea (Heyman, 2000). The consumption of kefir is beneficial in mitigating the symptoms of chronic constipation (Maeda *et al.*, 2004).

Source of Kefir

Kefir is a known to popular traditional Middle Eastern

beverage. Kefir consumption leads to a 'good-feeling'. It mainly originated in the Caucasus Mountains in Central Asia and also has been consumed for thousands of years (Libudzisz and Piatkiewicz, 1990). Kefir grains were first designated by the tribe people in the Northern Caucasian Mountain region of Russia (Seydim, 2001). Traditional kefir can be prepared by culturing fresh or pasteurized milk with kefir grains all over the world (Roberts *et al.*, 2000).

Functional Properties of Kefir

Kefir has many functional properties. Some of the functional properties of kefir are described below:

1. Anti-carcinogenic properties

The definition of an anti-carcinogenic is to 'tending to inhibit or prevent the activity of a carcinogen or the development of carcinoma'. Sarcoma tumors are derived from connective tissues like bone, fat, and cartilage (Kuby, 1994). The effects of freeze-dried kefir, produced from soy milk and cows' milk with kefir grains, to the growth of tumors in mice (Liu *et al.* 2002). On the study on induced breast cancer in mice, De Moreno *et al.* (2006) observed that mice receiving two days cyclical feeding with both kefir and a cell-free fraction of kefir over 27 days had a reduced tumor growth and increase in the IgA(+) cells. Topuz *et al.*, (2008) suggested the first study on the effect of oral kefir consumption on serum proinflammatory cytokines and on CT induced oral mucositis in humans with cancer.

2. Antimicrobial properties

Kefir has an antibacterial effect against many pathogenic organisms due to intrinsic formation of organic acids, hydrogen peroxide, carbon dioxide, acetaldehyde, and bacteriocins. For example, 3.5 kDa

bacteriocin was identified from the *Lactobacillus plantarum* ST8KF in kefir (Powell *et al.*, 2007). The hydrogen peroxide is to metabolite produced by bacteria as an antimicrobial compound. Yuksekdag *et al.* (2004a) reported that all 21 isolates of lactic acid bacteria from Turkish kefir produced hydrogen peroxide (0.04-0.19 µg/ml). Later on, they reported that 11 out of 21 strains of kefir *Lactococci* produced to hydrogen peroxide (Yuksekdag *et al.*, 2004). All *Lactococci* strains were effective in preventing the growth of *Streptococcus aureus*, while less effective against the *Escherichia coli* NRRL B-704 and *Pseudomonas aeruginosa*. Ahmed *et al.* (2011) observed that the kefir suspension, kefiran, and kefir grains showed antibacterial activity against the unicellular bacterial species and new antifungal activity against filamentous fungal species. Medrano *et al.* (2008) observed that kefiran, an exopolysaccharide produced from kefir grains, it protected against *Bacillus cereus*. Beyza *et al.* (2007) also revealed that the kefir has a good antimicrobial agent in food technology for food safety.

3. Lowering of cholesterol level

Kefir consumption reduces the serum cholesterol is limited level. Some researcher found that a decrease in total serum cholesterol and phospholipids, in rats fed with a high cholesterol diet supplemented with kefir. It was reported that the high density lipoprotein (HDL) and serum triglycerides were unaffected by kefir consumption (Rattray and Connell, 2011). Liu *et al.* (2006) observed that the milk kefir and soy milk kefir lowered the serum triacylglycerol and total cholesterol level in hamsters. They reported that the increase in the cholesterol-lowering effect of soy milk kefir as compared with soy milk, it might be attributable to hypo cholesterolaeamic compounds other than genistein present in the kefir but absent from the soy milk. Brashears *et al.*, (1998) and Tamai *et al.*, (1996) suggested that reduced serum cholesterol concentration to induced by kefir could be attributed to the deconjugation of bile acids by *Lactobacillus* spp. Reynier *et al.*, (1981) reported that deconjugation of bile acids reduced serum cholesterol levels by increasing the formation of new bile acids needed to replace those that have escaped the enterohepatic circulation. Kalavathy *et al.* (2009) reported that cholesterol removal from the growth medium by the *Lactobacillus* strains may be strain dependent. Maeda *et al.* (2005) reported that kefiran-fed rats had a serum cholesterol lowering effect in 2 rat models which were loaded with cholesterol and given orotic acid.

4. Improving lactose tolerance

Lactose maldigestion is the inability to completely

digest lactose, is the major carbohydrate all mammalian milks. Lactose maldigestion affects is about 75% of adults in the world and occurs most often as the result of a genetically programmed decrease in intestinal lactose activity after the age between 3 to 5 years (Sahi, 1994; Swaggerty *et al.*, 2002). Hertzler and Clancy (2003) observed that a kefir produced from a starter culture containing bacteria and yeast, it was equally as effective as yoghurt in reducing breath hydrogen in adult lactose maldigestors. Rattray and Connell (2011) observed that kefir with a diverse microbial population invariably has some degree of -galactosidase activity, that converts lactose into glucose and galactose, which can then be easily digested. Steven *et al.* (2003) found that kefir might improve lactose digestion in a manner similar to yogurt, there is a lack of research to support such a claim. Kefir contains different starter culture microorganisms from yogurt and bile acid sensitivity, galactosidase activity, or lactose transport of these organisms may be different. Chena *et al.* (2008) and Kyoung *et al.* (2007) observed that the anti-inflammatory properties of polysaccharide present in kefir extract may also be influential in the process of wound healing. Kamila *et al.*, (2005) study on rats, treating them with a simple kefir formulation made from dried grains.

5. Prebiotic and Probiotic Properties

Kefir has been found nutritionally beneficial, it has also been proven to inhibit a number of food-borne pathogens and spoilage microorganisms (Paucean and Carmen, 2008). Most of the probiotic products have been formulated and that contain small numbers of different bacteria. The chemical and microbiological compositions of kefir indicated that it is a much more complex probiotic. There are bacteria and yeasts present in kefir grains have undergone a long association, and it resultant the microbial population exhibits many similar characteristics, it making isolation and identification of individual species difficult. Many of these associated microorganisms are identified by using advanced molecular biological techniques (Edward, 2006). Santos *et al.*, (2003) reported that several strains of *Lactobacillus* spp. isolated from kefir in various countries have good adhesion to Caco-2 cells. The prebiotics are considered non-digestible but fermentable oligosaccharides, involving health promotion for the host (Barbosa *et al.*, 2011). These compounds are considered to provide improvements in nutritional status and health benefits such as protection against carcinogenesis, mutagenesis, prevention of injuries caused by free radicals, control of intestinal flora, and gastrointestinal resistance. The kefir is able

to produce peptide and sugar prebiotics like lactacin, bacteriocins, and kefiran (Schneedorf and Anfiteatro, 2004).

6. Benefits of Kefir for Nursing and Pregnant woman

By the National Kefir Association, pregnant and nursing women can consume kefir for health improvement. This also helps the absorption of nutrients, increases immunity, helps the body adjust to hormonal changes and prevents infections such as yeast overgrowth. Also, the consumption of kefir by pregnant women can help the overgrowth of a bacterium called group B of *Beta Streptococcus*.

CONCLUSIONS

Kefir is a complex probiotic, which is a combination of bacteria and yeasts. Kefir has many functional properties like antimicrobial, anti-carcinogenic, probiotic and others benefit. It also provides healthful benefits to the lowering effect of cholesterol and also improved lactose tolerance in humans. Kefir appears to a great potential and it should inspire researchers to carry out further studies on kefir in order to analyze the more information to therapeutic and functional properties which have not been revealed to till date.

REFERENCES

1. Ahmed, A., Ismaiel, M., Mohamed, F., Ayman, G.K. and Naggar, E.L. (2011). Milk Kefir: Ultrastructure, Antimicrobial Activity and Efficacy on Aflatoxin B1 Production by *Aspergillus flavus*. *Current Microbiology*. 62: 1602-1609.
2. Ahmed, Z., Wang, Y., Ahmad, A., Khan, S.T., Nisa, M., Ahma, H. and Afreen A. (2013). Kefir and health: a contemporary perspective. *Critical Reviews in Food Science and Nutrition*. 53: 422-434.
3. Barbosa, A.F., Santos, P.G., Lucho, A.S. and Schneedorf, J.M. (2011). Kefiran can disrupt the cell Membrane through induced pore formation. *Journal of Electroanalytical Chemistry*. 653: 61-66.
4. Beyza, H.U., Hilal, C., Hamparsun, H. and Mehmet, E. (2007). An in vitro study on the antibacterial effect of kefir against some food-borne pathogens. *Turkish Microbiological Society*. 37 (2): 103-107.
5. Brashears, M., Gilliland, S.E. and Buck, L.M. (1998). Bile salt deconjugation and cholesterol removal from media by *Lactobacillus casei*. *Journal of Dairy Science*. 81: 2103-2110.
6. Chena, H.C., Wanga, S.Y. and Chena, M.J. (2008). Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture- independent methods. *Food Microbiology*. 25: 492- 501.
7. De Moreno, A., Matar, A.C., Farnworth, E. and Perdigon, G. (2006). Study of immune cells involved in the antitumor effect of kefir in a murine breast cancer model. *Journal of Dairy Science*. 90: 1920-1928.
8. Edward, R.F. (2006). Kefir A Complex Probiotic. *Food Science and Technology Bulletin: Functional Foods*. 2(1): 201-205.
9. Guven, A., and Gulmez, M. (2003). The effect of kefir on the activities of GSH-Px, GST, CAT, GSH and LPO levels in carbon tetrachloride-induced mice tissues. *Journal of Veterinary Medicine* 50: 412-416.
10. Hertzler, S.R. and Clancy, S.M. (2003). Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. *Journal of the American Dietetic Association*. 103: 582 -587
11. Heyman, M. (2000). Effect of lactic acid bacteria on diarrheal diseases. *Journal of the American College of Nutrition*. 19: 137-146.
12. Kalavathy, R., Norhani, A., Michael, C.V.L.W., Chinna, K. and Yin, W.H. (2009). Bile salt deconjugation and cholesterol removal from media by *Lactobacillus* strains used as probiotics in chickens. *Wiley Inter science*. 90(1): 65-69
13. Kamila, L.R., Lucelia, R.G.C., Jose, C.T.C., Joao, E. and Jose, M.S. (2005). Antimicrobial and healing activity of kefir and kefiran extract. *International Journal of Antimicrobial Agents*. 25: 404-408.
14. Kaufmann, K. (1997). Kefir Rediscovered, ed. Alive Books, Burnaby, Canada, 3-17.
15. Kuby, J. (1994). Immunology. W.H. Freeman and Company. Second Edition, New York, U.S.A., 580-585.
16. Kyoung, K., Leeb, I.Y., Oha, S.R. and Leea, H.K. (2007). Anti-inflammatory and anti-allergic effects of kefir in a mouse asthma model. *Immunobiology*. 212: 647-654.
17. Libudzisz, Z. and Piatkiewicz, A. (1990). Kefir production in Poland. *Dairy Industries International*. 55: 31-33.
18. Liu, J.R., Wang, S.Y., Chen, M.J., Chen, H.L., Yueh, P.Y. and Lin, C.W. (2006). Hypocholesterolaemic effects of milk kefir and soyamilk-kefir in cholesterol-fed hamsters. *British Journal of Nutrition*. 95(5): 939-946.
19. Liu, J.R., Wang, S.Y., Chen, M.J., Yueh, P.Y. and Lin, C.W. (2006 a). The anti-allergenic properties of milk kefir and soy milk kefir and their beneficial effects on the intestinal microflora. *Journal of the Science of Food and Agriculture*. 86: 2527-2533.
20. Liu, J.R., Wang, S.Y., Lin, Y.Y. and Lin, C.W. (2002). Antitumor activity of milk kefir and soy milk kefir in tumor bearing mice. *Nutrition and Cancer*. 44: 182-187.
21. Maeda, H., Mizumoto, M., Suzuki, K. and Tsuji. (2005). Effects of Kefiran-Feeding on Fecal Cholesterol Excretion, Hepatic Injury and Intestinal Histamine Concentration in Rats. *Bioscience and Microflora*. 24(2): 35-40.
22. Maeda, H., Zhu, X., Omura, K., Suzuki, S. and Kitamura, S. 2004. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. *BioFactors*. 22 (1-4): 197-200.
23. Medrano, M., Perez, P.F. and Abraham, A.G. (2008). Kefiran antagonizes cytopathic effects of *Bacillus*

cereus extracellular factors. *International Journal of Food Microbiology*. 122: 1-2.

24. Paucean, A. and Carmen, S. (2008). Probiotic activity of mixed cultures of kefir's lactobacilli and non-lactose fermenting yeasts Bulletin UASVM, Agriculture. 65(2).
25. Powell, J.E., Witthuhn, R.C., Todorov, S.D. and Dicks, L.M.T. (2007). Characterization of bacteriocin ST8KF produced by a kefir isolate *Lactobacillus plantarum* ST8KF. *International Dairy Journal*. 17: 190-198.
26. Rattray, F.P. and Connell, M.J. (2011). Fermented Milks Kefir. In: Fukay JW, editor. Encyclopedia of Dairy Sciences. 2th ed. Academic Press; San Diego, U.S.A., 518-524.
27. Rattray, F.P. and Connell, M.J. (2011). Fermented Milks Kefir. In: Fukay JW, editor. Encyclopedia of Dairy Sciences. 2th ed. Academic Press; San Diego, U.S.A., 518-524.
28. Reid, G., Jass, J., Sebulsky, M.T. and McCormick, J.K. (2003). Potential uses of probiotics in clinical practice. *Clinical Microbiological Review*. 16: 658-672.
29. Reynier, M.O., Montet, J.C., Gerolami, A., Marteau, C., Crotte, C., Montet, A.M. and Mathieu, S. 1981. Comparative effects of cholic, chenodeoxycholic & ursodeoxycholic acids on micellar solubilization and intestinal absorption of cholesterol. *Journal of Lipid Research*. 22: 467-473
30. Roberts, M., Yarunin, S. and Danone. 2000. Moves into Russian kefir market. *New Nutrition Business*. 6: 22-24.
31. Sahi, T. 1994. Genetics and epidemiology of adult-type hypolactasia. *Scandinavian Journal of Gastroenterology*. 29(202): 7-20.
32. Santos, A., Sanmauro, M., Sanchez, A., Torres, J.M. and Marquina, D. (2003). The antimicrobial properties of different strains of *Lactobacillus* spp. isolated from kefir. *Systematic and Applied Microbiology*. 26: 434-437.
33. Schneedorf, J.M and Anfiteatro, D. 2004. Kefir, A probiotic produced by encapsulated microorganism and inflammation. In Anti-inflammatory Phytotherapics (Portuguese), JCT. Carvalho, editor. *Tecmed, Brazil*. 443-467.
34. Seydim, Z.B. (2001). Studies on fermentative, microbiological and biochemical properties of kefir and kefir grains. *Ph.D. Dissertation, Clemson University, Clemson, South Carolina, U.S.A.*
35. Steven, R., Hertzler, R.D., Shannon, M. and Clancy, M.S. (2003). Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. *Journal of the American Dietetic association*. 103(5): 582-587
36. Swaggerty, D.L., Walling, A.D. and Klein, R.M. (2002). Lactose intolerance. *American Family Physician*. 65: 1845-1856.
37. Tamai, Y., Yoshimitsu, N., Watanabe Y., Kuwabara, Y and Nagai, S. (1996). Effects of milk fermented by culturing with varius lactic acid bacteria and a yeast on serum cholesterol level in rats. *Journal of Fermentation and Bioenergy*. 81: 181-182.
38. Topuz, E., Derin, D., Can, G., Kurklu, E., Cinar, S. and Aykan, F. (2008). Effect of oral administration of kefir on serum proinflammatory cytokines on 5-FU induced oral mucositis in patients with colorectal cancer. *Investigational New Drugs*. 6: 567-572.
39. Topuz, E., Derin, D., Can, G., Kurklu, E., Cinar, S. and Aykan, F. (2008). Effect of oral administration of kefir on serum proinflammatory cytokines on 5-FU induced oral mucositis in patients with colorectal cancer. *Investigational New Drugs*. 6: 567-572.
40. Yuksekdag, Z.N., Beyatli, Y. and Aslim, B. (2004). Determination of some characteristics coccoid forms of lactic acid bacteria isolated from Turkish kefirs with natural probiotic. *Lebensmittel-Wissenschaft und-Technologies*. 37: 663-667.
41. Yuksekdag, Z.N., Beyatli, Y. and Aslim, B. (2004). Determination of some characteristics coccoid forms of lactic acid bacteria isolated from Turkish kefirs with natural probiotic. *Lebensmittel-Wissenschaft und-Technologies*. 37: 663-667.