

Morpho-Physiological Responses of Seed Pelleting and Crop Establishment Methods on Phonology, Growth, Physiology and Productivity of Sesame (*Sesamum indicum* L.)

Deepak Sen¹, R.K. Samaiya¹, Yogendra Singh^{2*} and Rohit Kumar Kumawat¹

¹Department of Plant Physiology, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur-482004 M.P.

²Dept. of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004 M.P.

*Author for Correspondence Email : yogendrasinghbt@gmail.com

Abstract

Sesame (*Sesamum indicum* L.) is commonly known as 'Til' also called as "Queen of oil seeds". It is belong to family pedaliaceae, and origin place is Africa. Sesame seed is used as an ingredient in several food products and animal feed, whereas its oil is medicinally important for application in pharmaceutical industry. A field experiment was conducted during kharif season of the year 2019 at Experimental Research farm, P.C. unit, Sesame and Niger (AICORP), JNKVV, Jabalpur (M.P.). The experiment consisted of 10 treatment combinations comprising of five main plot treatments of crop establishment methods viz., Farmer's practice (M_1), Dibbling in flat bed (M_2), Dibbling in ridges and furrows (M_3), Drum seeding (M_4), Seed drill sowing (M_5) and two sub plot treatments of seed pelleting viz., Non pelleted (S_1), Pelleted (Neem leaf powder 760g + 120g Azospirillum + 120g phosphobacteria For 1 kg of seed with rice gruel as adhesive) (S_2) and their interactions were laid on split plot design with three replications. The present experiment concluded that the crop establishment methods the M_3 -Ridge and furrow method of sowing in sesame crop record early field emergence, early 50 % flowering and physiological maturity also which is attributed maximum dry matter production, growth analytical traits viz.; highest LAI (5.54), LAD (86.83), CGR (0.041), RGR (0.094) NAR (0.0082) RWC (82.53 %), Chlorophyll contents (38.46), plant height (148.71 cm) and number of branches (7.10), yield and yield attributes, maximum seed (2.13 g plant⁻¹) and biological yield (8.65 g plant⁻¹) of crop. Seed pelleting also improved crop growth, dry matter production, LAI, LAD, CGR, NAR, RWC, Chlorophyll contents, plant height and number of branches, yield and yield attributes and yield of crop. Interaction treatment M_3S_2 -Ridges and furrows method of sowing and seed pelleting has significantly early field emergence, 50 % flowering and physiological maturity and improved the growth, dry matter production, LAI, LAD, CGR, RWC, Chlorophyll contents, plant height and number of branches, yield and yield attributes and yield of crop.

Key words : Sesame, seed pelleting, crop establishment, plant height, chlorophyll contents.

Introduction

Sesame (*Sesamum indicum* L.) is an important oilseed crop grown in India. It is belong to family pedaliaceae, and origin place is Africa. Sesame seeds are rich in oil, proteins, unsaturated fatty acids, vitamins, minerals, and folic acid. The seed contains 50–60% oil which has an excellent stability due to the presence of natural antioxidants such as sesamolin, sesamin and sesamol.

Sesame is very sensitive crop to a biotic stress like water logging and is grown in the arid and semi arid region the productivity of crop is severely affected due to water logging conditions in the irrigated areas. Generally, the crop is sown on flat field and is irrigated through flood irrigation so a considerable number of plants get wilted and ultimately die to water logging conditions. Seed showed maximum germination when stored at moistures (1). Sesame is a low water use crop and is unique in its ability to reserve late season moisture for the following crop. Planting techniques are the most important aspects of advanced production technology which not only

ensures better crop establishment but also results in efficient irrigation water utilization, especially when the crop is sown on ridges or beds (2). Sowing of sesame on beds and also on ridges produce higher number of capsules per plant and more seed weight, because plants on beds have suitable spacing for light penetration and this arrangement may also reduce competition among the plants. (3,4) found higher growth parameters and yield in ridge and furrow system over flat sowing system. Similar trends reported by (5).

One of the most promising techniques that can be adopted in direct sown small seeded crops like sesame, onion, lettuce is seed pelleting. Seed pelleting is the method of seed treatments to adding inert materials to seeds increasing their weight, size and shape. Which modifies the germination traits, accelerate germination, improve seedling establishment and enhance plant growth in helping the seed to germinate in a healthy and fertile environment. It provides macro and micronutrients essential for seedling establishment and protects the plants from pest and diseases during the early stages of

Table-1 : Effect of crop establishment methods, seed pelleting and their interaction on phenophases on sesame crop.

S. No.	Treatments	Days to Field emergence	Days to 50% flowering	Days to capsule emergence	Days to seed development	Days to physiological maturity	Days to harvest maturity
Main plot							
1	M ₁	4.83	40.35	50.83	62.40	87.83	96.33
2	M ₂	4.37	39.63	50.32	61.40	85.68	96.22
3	M ₃	4.03	37.30	47.78	60.67	84.23	94.83
4	M ₄	4.70	38.68	48.30	61.65	86.10	95.50
5	M ₅	4.42	38.55	49.40	61.75	87.33	94.43
	SEm ±	0.033	0.030	0.032	0.053	0.059	0.034
	CD (5%)	0.108	0.098	0.106	0.176	0.196	0.114
Sub plot							
1.	S ₁	4.59	39.02	49.50	61.27	86.48	95.67
2.	S ₂	4.35	38.79	49.15	61.36	85.99	95.24
	SEm ±	0.009	0.016	0.028	0.015	0.025	0.034
	CD (5%)	0.108	0.051	0.090	0.049	0.079	0.107
Interaction							
1	M ₁ × S ₁	4.93	40.43	51.10	62.30	88.07	96.40
2	M ₁ × S ₂	4.73	40.27	50.57	62.50	87.60	96.21
3	M ₂ × S ₁	4.47	39.73	50.10	61.30	86.06	96.43
4	M ₂ × S ₂	4.27	39.53	50.23	61.50	85.30	96.03
5	M ₃ × S ₁	4.23	37.37	48.10	60.23	84.40	95.41
6	M ₃ × S ₂	3.83	37.23	47.47	60.50	84.07	94.27
7	M ₄ × S ₁	4.83	38.83	48.40	61.80	86.40	95.62
8	M ₄ × S ₂	4.57	38.53	48.20	61.50	85.80	95.42
9	M ₅ × S ₁	4.47	38.73	49.50	60.70	87.47	94.57
10	M ₅ × S ₂	4.37	38.37	49.30	60.80	87.20	94.30
	SEm ±	0.046	0.042	0.045	0.075	0.084	0.048
	CD (5%)	0.069	0.117	0.204	0.112	0.0182	0.243

its growth. (6) reported that seed germination and root colonization of sesame were significantly improved when the sesame seeds were pelleted and consequently the grain yield was increased by 10.2%. Seed priming also serves to maintain seed physical quality, like other treatments, yet it also has the potential to reduce farmers risk of poor seedling emergence under variable and uncertain moisture conditions. Hence the experiment was conducted with the Objective to find out the Investigation of the effect of seed pelleting on phonological developments, growth, physiology and productivity of Sesame.

Materials and Methods

A field experiment was conducted during kharif season of the year 2019 at Experimental Research farm, P.C. unit, Sesame and Niger (AICORP), JNKVV, Jabalpur (M.P.). Total five main plot treatments of crop establishment methods viz., Farmer's practice (M₁), Dibbling in flat bed (M₂), Dibbling in ridges and furrows (M₃), Drum seeding (M₄), Seed drill sowing (M₅) and two sub plot treatments of seed pelleting viz., Non pelleted (S₁), Pelleted (Neem leaf powder 760g + 120g Azospirillum + 120g

phosphobacteria. For 1kg of seed with rice gruel as adhesive) (S₂) and their interactions were laid on split plot design with three replications. The experimental field is situated at 23° 90' N longitude and 79° 58' E longitude at an altitude of 411.78 meter above the mean sea level. It falls under subtropical climatic conditions and the mean annual rainfall of the area is 1284 mm and nearly 90% of the total annual rainfall is mainly received during the period between ends of June to end of September. The maximum and minimum temperature ranges between 24°C to 45°C, and 4°C to 32°C, respectively within a year. In some of the years, maximum temperature reaches as high as 45°C in the month of May or June, while minimum temperature falls 2°C down to a limit of 4°C during end of December or January months. The relative humidity ranges between 80 to 90% during rainy season, which reduces as 60 to 70 and 30 to 40% during winter and summer seasons respectively. Seed treatment was done in the form of pelleted (Neem leaf powder 760 g + 120 g Phospho-bacteria for 1 kg of seed with rice gruel as adhesive) Seeds and the sowing. The observations were recorded on three randomly selected and tagged plants from treatment and replication for the following parameters. The phonological observations of sesame

Table-2 : Effect of crop establishment methods, seed pelleting and their interaction on total dry matter production (g plant⁻¹) at different growth stage in sesame crop.

S.No.	Treatments	Total Dry matter production (g plant ⁻¹)				
		30 DAS	45 DAS	60 DAS	75 DAS	At harvest
Main plot						
1.	M ₁	1.36	2.65	5.86	9.21	9.81
2.	M ₂	1.46	2.93	6.53	10.01	10.93
3.	M ₃	1.66	3.85	7.87	12.23	13.13
4.	M ₄	1.55	3.02	6.67	11.35	11.85
5.	M ₅	1.59	3.22	7.12	11.94	12.24
	SEm±	0.002	0.003	0.002	0.005	0.003
	CD (5%)	0.007	0.009	0.006	0.015	0.009
Sub plot						
1.	S ₁	1.51	3.11	6.79	10.92	11.62
2.	S ₂	1.54	3.16	6.83	10.97	11.86
	SEm±	0.002	0.001	0.002	0.002	0.002
	CD (5%)	0.006	0.005	0.008	0.007	0.005
Interaction						
1.	M ₁ ×S ₁	1.35	2.63	5.84	9.24	9.85
2.	M ₁ ×S ₂	1.37	2.66	5.87	9.97	9.87
3.	M ₂ ×S ₁	1.45	2.90	6.51	10.5	10.91
4.	M ₂ ×S ₂	1.48	2.94	6.55	12.21	10.94
5.	M ₃ ×S ₁	1.64	3.84	7.85	12.25	13.10
6.	M ₃ ×S ₂	1.67	3.86	7.89	11.33	13.15
7.	M ₄ ×S ₁	1.55	2.96	6.65	11.36	11.83
8.	M ₄ ×S ₂	1.56	3.07	6.68	11.93	11.86
9.	M ₅ ×S ₁	1.57	3.21	7.08	11.95	12.22
10.	M ₅ ×S ₂	1.61	3.24	7.15	0.006	12.26
	SEm ±	0.003	0.003	0.003	0.017	0.004
	CD (5%)	0.014	0.011	0.017	9.24	0.012

crop were noted from five selected plants through daily visual observations throughout the growth periods. Morphological growth parameters *viz.*, plant height and number of branches at 30, 45, 60, 75 DAS and maturity stage. Physiological growth parameters were record *viz.*, plant biomass, LAI, LAD, CGR, RGR, NAR, RWC and chlorophyll content index by Chlorophyll meter (CCM-200) were analysed during different crop growth periods.

Results and Discussion

In the present study, the phenophasic development was significantly influenced by different crop establishment methods. The treatment M₃-Ridge and furrow method of sowing was noted in minimum days to field emergence (4.03), days to taken 50 % flowering (37.30), days to capsule emergence(47.78), days to seed development (60.37), days to physiological maturity (84.23) and days to harvest maturity (94.83) as compared to other crop establishment method.

The seed pelleting varied significantly to phenophasic development. The minimum days to field emergence (4.35), days to taken 50 % flowering (38.79), days to capsule emergence (49.15), days to seed

development (61.27), days to physiological maturity (85.99) and days to harvest maturity (95.24) was noted in S₂ pelleting as compared to S₁-non pelleting. (2) also concluded that plants of primed seeds took fewer days to emerge and reached earlier flowering and maturity than plants of non-primed seeds.

All the phenophases record earlier in treatment combination of M₃S₂. However, the maximum days was recorded under treatment M₁S₁. The findings are in agreement with the results of (7) reported that the seed treated with ZnSO₄ @ 300 mg/kg of seeds recorded higher field emergence percentage (91%) than untreated seeds of tomato. (8) also reported that osmo-priming with CaCl₂ reduced emergence time, flowering and maturity times, leading to increased seed yield and seed weight in linseed.

Dry matter production (g plant⁻¹) :The dry matter production was significantly affected at different growth stages by crop establishment methods and seed pelleting and their interaction. Dry matter production plant⁻¹ ranged from 9.85 g -13.15 g plant⁻¹ at harvest. With respect to crop establishment method and seed pelleting significant difference was observed on dry matter production g plant⁻¹

Table-3 : Effect of crop establishment methods, seed pelleting and their interaction on Leaf Area Index (LAI) and Leaf Area Duration (LAD) (m² days) in sesame crop.

S.N.	Treatments	Leaf Area Index (LAI)				Leaf Area Duration (LAD) (m ² days)			
		30 DAS	45 DAS	60 DAS	75 DAS	At harvest	30 DAS	45 DAS	60 DAS
Main plot					Main plot				
1.	M ₁	1.23	1.93	3.47	4.45	3.74	22.60	33.44	55.67
2.	M ₂	1.35	2.25	3.84	5.07	3.92	24.46	35.36	58.25
3.	M ₃	1.96	2.95	4.63	5.34	4.74	30.15	39.40	62.26
4.	M ₄	1.58	2.64	4.11	5.06	4.14	26.39	36.25	60.15
5.	M ₅	1.87	2.73	4.15	5.17	4.27	28.30	37.80	61.55
	SEm±	0.007	0.002	0.002	0.005	0.002	0.023	0.012	0.022
	CD (5%)	0.023	0.007	0.006	0.016	0.007	0.076	0.038	0.072
Sub plot					Sub plot				
1.	S ₁	1.58	2.49	4.02	5.00	4.14	26.34	36.42	59.55
2.	S ₂	1.62	2.52	4.05	5.04	4.18	26.43	36.48	59.60
	SEm±	0.002	0.003	0.002	0.003	0.001	0.009	0.003	0.002
	CD (5%)	0.007	0.005	0.005	0.008	0.004	0.027	0.011	0.008
Interaction effect					Interaction				
1.	M ₁ ×S ₁	1.22	1.92	3.45	4.43	3.71	22.50	33.41	55.64
2.	M ₁ ×S ₂	1.25	1.94	3.49	4.46	3.76	22.70	33.47	55.69
3.	M ₂ ×S ₁	1.33	2.23	3.83	5.06	3.90	24.43	35.33	58.22
4.	M ₂ ×S ₂	1.37	2.27	3.85	5.08	3.93	24.48	35.38	58.28
5.	M ₃ ×S ₁	1.95	2.92	4.61	5.33	4.71	30.13	39.36	62.24
6.	M ₃ ×S ₂	1.97	2.97	4.65	5.36	4.76	30.17	39.45	62.28
7.	M ₄ ×S ₁	1.55	2.61	4.10	5.03	4.11	26.34	36.23	60.13
8.	M ₄ ×S ₂	1.61	2.66	4.12	5.10	4.16	26.43	36.26	60.18
9.	M ₅ ×S ₁	1.84	2.72	4.14	5.15	4.25	28.27	37.75	61.54
10.	M ₅ ×S ₂	1.89	2.75	4.16	5.18	4.28	28.34	37.85	61.57
	SEm±	0.007	0.003	0.002	0.007	0.003	0.033	0.016	0.031
	CD (5%)	0.016	0.012	0.012	0.019	0.009	0.027	0.024	0.018
									0.021

of Sesame. Treatment M₃-ridge and furrow method of sowing was noted in maximum dry matter production g plant⁻¹(13.13) as compared to M₁-farmer's practices minimum dry matter production g plant⁻¹ (9.86).

Seed pelleting treatments S₂-pelleted seed was noted maximum dry matter production g plant⁻¹(11.86) as compared to S₁ (non pelleting) minimum dry matter production g plant⁻¹ (11.62).

However, their interaction has significant effect on dry matter production g plant⁻¹M₁S₁-farmer practice's and non pelleting was noted minimum dry matter production g plant⁻¹ (9.85) as compared to treatment M₃S₂-Ridges and furrows method of sowing and seed pelleting recorded maximum dry matter production g plant⁻¹ (13.15). Similar results were also reported by (9) soybean depends on its symbionts Bradyrhizobium japonicum for effective growth and dry matter production. Phosphate solubilizing bacteria improved nodulation, root and shoot biomass,

straw and grain yield and P and N uptake of the soya crop. The results are in close conformity with the findings of (9) reported that the seed pelleting with 250 mg ammonium molybdate + 500 mg ferrous sulphate per kg of seeds was most effective in enhancing plant height, leaf area index and dry matter production in soybean.

Growth analysis traits : In the present study, the different crop establishment method and seed pelleting their interaction was significantly influenced physiological growth analytical traits viz., LAI, LAD, CGR RGR and NAR. LAI, LAD was increased up to 75 DAS or CGR and RGR was increased up to 60 DAS and their after it decreases due to leaf senescence. Similar results were also reported by (10) noted that the senescence of leaves at maturity reduced the CGR, LAI, and LAD and consequently the rate of dry matter accumulation.

Seed priming and foliar spray maximally improved the performance of early sown maize crop which is

Table-4 : Effect of crop establishment methods, seed pelleting and their interaction on Crop Growth Rate (g/cm²/day) and Relative Growth Rate (g/g/day) in sesame crop.

S.N.	Treatments	Crop Growth Rate (CGR) (g cm ⁻² day ⁻¹)					Relative Growth Rate (RGR) (g g ⁻¹ day ⁻¹)				
		30 DAS	45 DAS	60 DAS	75 DAS	At harvest	30 DAS	45 DAS	60 DAS	75 DAS	At harvest
		Main plot					Main plot				
1	M ₁	0.013	0.023	0.034	0.024	0.0075	0.012	0.028	0.084	0.014	0.004
2	M ₂	0.017	0.027	0.037	0.026	0.0082	0.014	0.030	0.088	0.015	0.005
3	M ₃	0.022	0.031	0.041	0.030	0.0090	0.021	0.032	0.094	0.021	0.007
4	M ₄	0.020	0.028	0.038	0.027	0.0086	0.018	0.031	0.091	0.019	0.006
5	M ₅	0.021	0.030	0.039	0.029	0.0088	0.019	0.030	0.092	0.019	0.006
	SEm \pm	0.002	0.003	0.004	0.001	0.0002	0.001	0.002	0.002	0.001	0.0001
	CD (5%)	0.001	0.002	0.001	0.002	0.0001	0.003	0.001	0.001	0.001	0.0002
		Sub plot					Sub plot				
1.	S ₁	0.018	0.027	0.037	0.026	0.0084	0.015	0.029	0.089	0.017	0.004
2.	S ₂	0.019	0.029	0.038	0.028	0.0089	0.018	0.031	0.091	0.019	0.006
	SEm \pm	0.003	0.004	0.002	0.003	0.0002	0.003	0.002	0.001	0.003	0.0002
	CD (5%)	0.001	0.002	0.001	0.002	0.0001	0.001	0.002	0.002	0.001	0.0001
		Interaction					Interaction				
1	M ₁ xS ₁	0.012	0.022	0.033	0.023	0.0072	0.010	0.026	0.082	0.014	0.003
2	M ₁ xS ₂	0.014	0.024	0.035	0.025	0.0083	0.013	0.030	0.085	0.015	0.004
3	M ₂ xS ₁	0.016	0.026	0.036	0.026	0.0085	0.011	0.029	0.087	0.014	0.004
4	M ₂ xS ₂	0.019	0.028	0.038	0.027	0.0087	0.016	0.031	0.089	0.016	0.005
5	M ₃ xS ₁	0.021	0.030	0.040	0.028	0.0090	0.019	0.031	0.093	0.019	0.006
6	M ₃ xS ₂	0.024	0.033	0.042	0.031	0.0091	0.023	0.033	0.095	0.022	0.007
7	M ₄ xS ₁	0.019	0.026	0.037	0.026	0.0087	0.016	0.029	0.090	0.018	0.005
8	M ₄ xS ₂	0.021	0.029	0.038	0.028	0.0088	0.019	0.032	0.092	0.020	0.006
9	M ₅ xS ₁	0.020	0.028	0.037	0.027	0.0089	0.018	0.028	0.091	0.018	0.005
10	M ₅ xS ₂	0.022	0.031	0.040	0.030	0.0090	0.020	0.032	0.093	0.019	0.006
	SEm \pm	0.002	0.002	0.003	0.003	0.0004	0.002	0.001	0.001	0.002	0.0001
	CD (5%)	0.003	0.001	0.002	0.001	0.0002	0.001	0.001	0.002	0.002	0.0002

attributed more likely to improved stand establishment, chlorophyll and phenolic content, increased LAD period, similarly increased chlorophyll contents, CGR and LAI (11). The maximum LAI (5.36) and LAD (86.88) at 75 DAS was recorded under treatment M₃S₂- Ridges and furrows method of sowing and seed pelleting at 75 DAS. The maximum CGR and RGR at 60 DAS were recorded under treatment M₃S₂ at 75 DAS.

The interactions treatment M₁S₁ (farmer practice's and Non pelleting) was noted minimum net assimilation rate (0.0063) as compared to treatment M₃S₂ (ridges and furrows method of sowing and pelleting) maximum net assimilation rate (0.0082). The results are in close conformity the findings of (12) reported that the crop growth rate ant net assimilation rate was higher when crops are planted on ridge and furrow or bed planting system of mustard.

In the present study, ranges for chlorophyll content

were found to be 34.23-38.67. With respect the treatment M₃-Ridges and furrows method of sowing was noted in maximum chlorophyll content (38.46) as compared to M₁-Farmer's practice had minimum chlorophyll content (34.40) and seed pelleting on chlorophyll content S₂-seed pelleting was noted maximum chlorophyll content (36.65) as compared to S₁-Non pelleting was minimum chlorophyll content (36.26). However, their interaction has significant effect on chlorophyll content M₁S₁-farmer practice's and Non pelleting was noted minimum chlorophyll content (34.23) as compared to treatment M₃S₂-Ridges and furrows method of sowing and seed pelleting was maximum chlorophyll content (38.67). Similar results were also reported by (13) reported positive and significant correlation of chlorophyll content with yield, confirmed its role towards higher source activity.

The significantly maximum relative water content % (82.53) was recorded under M₃-Ridges and furrows

Table-5 : Effect of crop establishment methods, seed pelleting and their interaction on Net Assimilation Rate (g/cm²/day), Chlorophyll Content Index and Relative Water Content (%) in sesame crop.

S.N.	Treatments	Net Assimilation Rate (NAR) (g/cm ² /day)					Chlorophyll content index	Relative water content (%)
		30 DAS	45 DAS	60 DAS	75 DAS	At harvest		
Main plot								
1.	M ₁	0.0035	0.0039	0.0052	0.0065	0.0055	34.40	75.36
2.	M ₂	0.0042	0.0048	0.0061	0.0078	0.0073	35.45	76.34
3.	M ₃	0.0052	0.0063	0.0076	0.0082	0.0074	38.46	82.53
4.	M ₄	0.0043	0.0058	0.0072	0.0079	0.0066	36.58	78.23
5.	M ₅	0.0050	0.0060	0.0074	0.0080	0.0075	37.38	80.69
SEm±		0.0001	0.0002	0.0001	0.0003	0.0002	0.020	0.024
CD (5%)		0.0003	0.0001	0.0002	0.0001	0.0001	0.067	0.078
Sub plot								
1.	S ₁	0.0042	0.0057	0.0065	0.0075	0.0068	36.26	78.55
2.	S ₂	0.0051	0.0059	0.0073	0.0078	0.0073	36.65	78.71
SEm±		0.0002	0.0003	0.0002	0.0002	0.0001	0.018	0.008
CD (5%)		0.0001	0.0001	0.0003	0.0001	0.0003	0.058	0.026
Interaction								
1.	M ₁ ×S ₁	0.0026	0.0033	0.0052	0.0063	0.0053	34.23	75.25
2.	M ₁ ×S ₂	0.0037	0.0045	0.0055	0.0066	0.0054	34.57	75.46
3.	M ₂ ×S ₁	0.0044	0.0049	0.0061	0.0074	0.0058	35.17	76.22
4.	M ₂ ×S ₂	0.0048	0.0055	0.0064	0.0077	0.0063	35.73	76.46
5.	M ₃ ×S ₁	0.0050	0.0060	0.0072	0.0080	0.0071	38.23	82.45
6.	M ₃ ×S ₂	0.0052	0.0062	0.0075	0.0082	0.0074	38.67	82.61
7.	M ₄ ×S ₁	0.0046	0.0057	0.0071	0.0075	0.0064	36.43	78.16
8.	M ₄ ×S ₂	0.0048	0.0060	0.0073	0.0078	0.0067	36.73	78.29
9.	M ₅ ×S ₁	0.0050	0.0061	0.0072	0.0079	0.0072	37.23	80.66
10.	M ₅ ×S ₂	0.0051	0.0062	0.0074	0.0081	0.0075	37.53	80.74
SEm±		0.0001	0.0002	0.0001	0.0003	0.0001	0.029	0.033
CD (5%)		0.0002	0.0003	0.0002	0.0001	0.0002	0.132	0.059

method of sowing. Seed pelleting (S₂) was noted maximum relative water content % (78.61) as compared to S₁ (Non pelleting) minimum relative water content % (78.55). However, their interaction has significant effect on relative water content.

Plant height and number of branches are the important growth parameters of any crop as it determines or modifies the yield contributing characters. The significantly maximum plant height (148.71) and number of branches (7.10) were recorded under treatment M₃-Ridges and furrows method of sowing. The minimum plant height (137.30) and number of branches (5.84) were noted in M₁-Famer's practice. The result revealed a significant variation due to seed pelleting. The maximum plant height (145.21) and number of branches (6.60) at harvest was noted in S₂- pelleting seeds while, a minimum (144.17) value plant height was observed in S₁-non pelleting. The crop establishment methods of sowing and seed pelleting their interaction influenced plant height at harvest significantly. The combination of M₃S₂ had highest

plant height (149.18) and number of branches (7.13) while, the minimum plant height was noted in M₁S₁. The potential to obtain increased plant height on ridge may be expected because ridges have loose soil, more aeration and drainage which is less compacted, have been found to be effective in enhancing maize seed emergence inducing vigour to plant growth (14). In a different study, (15) found that soybean grown on ridges gave the highest number of leaves and tillers, root length, plant height and fresh and dry weight.

The greater grain yield was obtained from ridges and furrows method of sowing than the two other showing methods this might could be due to better growth of plant, higher LAI, LAD, CGR and higher chlorophyll contain index that resulted higher yield and yield attributes and finally to maximum yield. This agrees with 16), mention that ridges are recommended if water logging is a problem. Ridging is commonly practised and the indication is that it could increase grain yield (16) Probably, due to higher bulk densities in flat ground, the

Table-6 : Effect of crop establishment methods, seed pelleting and their interaction on plant height (cm) and number of branches Seed yield (g/plant) and Biological yield (g/plant) in sesame crop.

S.N.	Treatments	Plant height (cm)	Number of branches	Seed yield (g/plant)	Biological yield (g/plant)
Main plot					
1.	M ₁	137.30	5.84	1.35	6.65
2.	M ₂	143.99	6.35	1.57	7.63
3.	M ₃	148.71	7.10	2.13	8.65
4.	M ₄	145.70	6.74	1.62	7.43
5.	M ₅	147.83	6.86	1.77	7.75
	SEm \pm	0.035	0.007	0.016	0.013
	CD (5%)	0.117	0.015	0.054	0.045
Sub plot					
1.	S ₁	144.17	6.55	1.61	7.50
2.	S ₂	145.21	6.60	1.76	7.75
	SEm \pm	0.011	0.004	0.009	0.019
	CD (5%)	0.030	0.009	0.030	0.060
Interaction					
1.	M ₁ xS ₁	136.55	5.82	1.30	6.43
2.	M ₁ xS ₂	137.84	5.85	1.40	6.87
3.	M ₂ xS ₁	143.43	6.33	1.50	7.57
4.	M ₂ xS ₂	144.54	6.36	1.63	7.73
5.	M ₃ xS ₁	148.24	7.06	2.10	8.77
6.	M ₃ xS ₂	149.18	7.13	2.17	8.85
7.	M ₄ xS ₁	145.27	6.69	1.53	7.33
8.	M ₄ xS ₂	146.15	6.78	1.70	7.53
9.	M ₅ xS ₁	147.35	6.84	1.62	7.67
10.	M ₅ xS ₂	148.32	6.88	1.90	7.83
	SEm \pm	0.050	0.009	0.023	0.019
	CD (5%)	0.083	0.018	0.069	0.136

pod yields were less than in ridges as a result of unfavourable conditions for peg penetration, pod setting and development in the surface soil layers of flat seed beds. In the present study, seed yield g plant⁻¹ ranged from 1.30 g plant⁻¹ – 2.17 g plant⁻¹. With respect to crop establishment method and seed pelleting significant difference was observed on seed yield g plant⁻¹ of Sesame. Treatment M₃-Ridges and furrows method of sowing was noted in maximum seed yield g plant⁻¹(2.13) and biological yield g plant⁻¹(8.65) as compared to M₁-farmer's practices had minimum seed yield g plant⁻¹ (1.35) and biological yield g plant⁻¹(6.65) and seed pelleting on seed yield g plant⁻¹ S₂-Pelleted was noted maximum seed yield g plant⁻¹(1.76) and biological yield g plant⁻¹ (7.75) as compared to S₁ (Non pelleting) minimum seed yield g plant⁻¹ (1.61) and biological yield g plant⁻¹(7.50).

However, their interaction has significant effect on seed yield g plant⁻¹M₁S₁-Farmer practice's and Non pelleting was noted minimum seed yield g plant⁻¹ (1.30) and biological yield g plant⁻¹ (6.43) as compared to

treatment M₃S₂-(Ridges and furrows method of sowing and seed pelleting had maximum seed yield g plant⁻¹ (2.17) and biological yield g plant⁻¹ (8.85). (17) with seed production of summer groundnut observed significantly higher field emergence, number of nodules per plant, pods per plant, seed yield per plant and biological yield per plant with polythene mulch (7 mm thickness) over raised bed method. (4) found higher growth parameters, yield and yield attributes parameters in ridge and furrow system over flat sowing system in soybean. Similar trends reported by (5).

Conclusions

The present experiment concluded that the crop establishment methods the M₃-Ridge and furrow method of sowing in sesame crop record early field emergence, 50 % flowering and physiological maturity. Seed pelleting also improved crop growth, dry matter production, LAI, LAD, CGR, RWC, Chlorophyll contents, plant height and number of branches, yield and yield attributes and yield of crop.

References

1. Ashwani Sharma (2020). Physiological, bio chemical and molecular modifications during the process of ultradessication in sun flower seed. *Frontiers in Crop Improvement*, 8(2): 83-89.
2. Asghar M.M., Saleem M.F., Cheema M.A. and Ahmed S. (2003). Influence of different nitrogen level on productivity of sesame (*Sesamum indicum L.*) under varying planting patterns. *International Journal of Agriculture & Biology*, 5(4): 490-492.
3. Jadhav J.A., Patil D.B. and Ingole P.G. (2012). Effect of mechanization with different land configuration on yield and *in situ* moisture conservation of soybean. *Internat. J. agric. Sci.*, 8(1): 48-51.
4. Dhakad S.S., A.K. Badaya, S.S. Chauhan and G.S. and Gathiye (2015). Effect of ridge and furrow system on the growth character and yield in rainfed soybean in Madhya Pradesh. *Indian Journal of Ecology*, 42(1): 230-232.
5. Bhargav K.S., V.K. Jain and Umat R. (2013). Ridge and furrow system of planting seeds: A water management approach for increased soybean production in Madhya Pradesh. *Journal of Inter. academicia* 17(2): 245-253.
6. Ryu C.M., Kim J., Choi O., Kim S.H. and Chang S.P. (2006). Improvement of biological control capacity of *Paenibacillus polymyxa*, E681 by seed pelleting on sesame. *Biol. Control.*, 39: 282-289.
7. Shashibhaskar M.S. and Vasudevan S.N. (2008). Influence of seed pelleting on storability of Tomato (*Lycopersicum esculentum* Mill.). *Karnataka J. Agric. Sci.*, 22(5): 1097-1103.
8. Rehman H.U., Nawaz M.Q., Maqsood S., Ahmad Basra, Irfan, Afzal, Azra, Yasmeen and Hassan F.U. (2014). Seed priming influence on early crop growth, phonological development and yield performance of linseed (*Linum usitatissimum L.*). *J. Integr. Agric.*, 13: 990-96.
9. Ramesh K. and Thirumurugan V. (2001). Effect of seed pelleting and foliar nutrition on growth of soybean. *Madras Agric. J.*, 88: 465-468.
10. Kamaraj A., Padmavathi S. and Balasubramanian S. (2017). Studies on pre-sowing seed treatment for seed Production under abiotic stress condition in sesame (*Sesamum indicum L.*). *Plant Arch.*, 17(1): 211-215.
11. Singh R. and Agarwal S.K. (2001). Analysis of growth and productivity of wheat (*Triticum aestivum L.*) in relation to levels of FYM and nitrogen. *Indian Journal Plant Physiology*, 6(3): 279-283.
12. Bakhtavar M.A., Afzal I., Basra S.M.A., Ahmad A.U.H. and Noor M.A. (2015). Physiological strategies to improve the performance of spring maize (*Zea mays L.*) planted under early and optimum sowing conditions. *Plos one Journal*, 10(4): 450-455.
13. Kumari C.R. and Rao D.S.K. (2005). Effect of land treatments and dates of sowing on growth parameters of mustard (*Brassica juncea L.*). *J. Oilseeds Research*, 22(1): 188-189.
14. Ghosh D., Thangamni Manisha, Thapliyal Yashodhai R. and Gurumuthy K. (2000). Solution of *Andrographis paniculata* leaf protein with Antifungal property. *Acta Phytopathological and Entomological Hungarica*, 4(29): 37-329.
15. Choudhary R.R., Yadav H.L., Choudhary S.L., Prajapat A.L. and Choudhary R. (2017). Effect of integrated nutrient management on growth of wheat (*Triticum aestivum*) cultivars. *Int. J. Curr. Microbiol. App. Sci.*, 6(8): 2369-2374.
16. Wiggins T.A. (1995). The effect of seed bed design on sorghum production in an arid environment. *Journal of Arid Environments*, 29(3): 317-324.
17. Haile D. and Keith S. (2017). Groundnut cropping guide. *Africa Soil Health Consortium*, Nairobi. 2017.
18. Patil B., N.K., SangeetaMacha, Hanchinal R.R. and Nadaf H.L. (2006). Effect of polythene mulching on seed yield and quality of summer groundnut. *Abstract XII National Seed Seminar*, ANGRAU, Hyderabad, p. 67.